
Network Working Group P. Mockapetris

Request for Comments: 1034 ISI

Obsoletes: RFCs 882, 883, 973 November 1987

 DOMAIN NAMES - CONCEPTS AND FACILITIES

1. STATUS OF THIS MEMO

This RFC is an introduction to the Domain Name System (DNS), and omits

many details which can be found in a companion RFC, "Domain Names -

Implementation and Specification" [RFC-1035]. That RFC assumes that the

reader is familiar with the concepts discussed in this memo.

A subset of DNS functions and data types constitute an official

protocol. The official protocol includes standard queries and their

responses and most of the Internet class data formats (e.g., host

addresses).

However, the domain system is intentionally extensible. Researchers are

continuously proposing, implementing and experimenting with new data

types, query types, classes, functions, etc. Thus while the components

of the official protocol are expected to stay essentially unchanged and

operate as a production service, experimental behavior should always be

expected in extensions beyond the official protocol. Experimental or

obsolete features are clearly marked in these RFCs, and such information

should be used with caution.

The reader is especially cautioned not to depend on the values which

appear in examples to be current or complete, since their purpose is

primarily pedagogical. Distribution of this memo is unlimited.

2. INTRODUCTION

This RFC introduces domain style names, their use for Internet mail and

host address support, and the protocols and servers used to implement

domain name facilities.

2.1. The history of domain names

The impetus for the development of the domain system was growth in the

Internet:

 - Host name to address mappings were maintained by the Network

 Information Center (NIC) in a single file (HOSTS.TXT) which

 was FTPed by all hosts [RFC-952, RFC-953]. The total network

Mockapetris [Page 1]

RFC 1034 Domain Concepts and Facilities November 1987

 bandwidth consumed in distributing a new version by this

 scheme is proportional to the square of the number of hosts in

 the network, and even when multiple levels of FTP are used,

 the outgoing FTP load on the NIC host is considerable.

 Explosive growth in the number of hosts didn't bode well for

 the future.

 - The network population was also changing in character. The

 timeshared hosts that made up the original ARPANET were being

 replaced with local networks of workstations. Local

 organizations were administering their own names and

 addresses, but had to wait for the NIC to change HOSTS.TXT to

 make changes visible to the Internet at large. Organizations

 also wanted some local structure on the name space.

 - The applications on the Internet were getting more

 sophisticated and creating a need for general purpose name

 service.

The result was several ideas about name spaces and their management

[IEN-116, RFC-799, RFC-819, RFC-830]. The proposals varied, but a

common thread was the idea of a hierarchical name space, with the

hierarchy roughly corresponding to organizational structure, and names

using "." as the character to mark the boundary between hierarchy

levels. A design using a distributed database and generalized resources

was described in [RFC-882, RFC-883]. Based on experience with several

implementations, the system evolved into the scheme described in this

memo.

The terms "domain" or "domain name" are used in many contexts beyond the

DNS described here. Very often, the term domain name is used to refer

to a name with structure indicated by dots, but no relation to the DNS.

This is particularly true in mail addressing [Quarterman 86].

2.2. DNS design goals

The design goals of the DNS influence its structure. They are:

 - The primary goal is a consistent name space which will be used

 for referring to resources. In order to avoid the problems

 caused by ad hoc encodings, names should not be required to

 contain network identifiers, addresses, routes, or similar

 information as part of the name.

 - The sheer size of the database and frequency of updates

 suggest that it must be maintained in a distributed manner,

 with local caching to improve performance. Approaches that

Mockapetris [Page 2]

RFC 1034 Domain Concepts and Facilities November 1987

 attempt to collect a consistent copy of the entire database

 will become more and more expensive and difficult, and hence

 should be avoided. The same principle holds for the structure

 of the name space, and in particular mechanisms for creating

 and deleting names; these should also be distributed.

 - Where there tradeoffs between the cost of acquiring data, the

 speed of updates, and the accuracy of caches, the source of

 the data should control the tradeoff.

 - The costs of implementing such a facility dictate that it be

 generally useful, and not restricted to a single application.

 We should be able to use names to retrieve host addresses,

 mailbox data, and other as yet undetermined information. All

 data associated with a name is tagged with a type, and queries

 can be limited to a single type.

 - Because we want the name space to be useful in dissimilar

 networks and applications, we provide the ability to use the

 same name space with different protocol families or

 management. For example, host address formats differ between

 protocols, though all protocols have the notion of address.

 The DNS tags all data with a class as well as the type, so

 that we can allow parallel use of different formats for data

 of type address.

 - We want name server transactions to be independent of the

 communications system that carries them. Some systems may

 wish to use datagrams for queries and responses, and only

 establish virtual circuits for transactions that need the

 reliability (e.g., database updates, long transactions); other

 systems will use virtual circuits exclusively.

 - The system should be useful across a wide spectrum of host

 capabilities. Both personal computers and large timeshared

 hosts should be able to use the system, though perhaps in

 different ways.

2.3. Assumptions about usage

The organization of the domain system derives from some assumptions

about the needs and usage patterns of its user community and is designed

to avoid many of the the complicated problems found in general purpose

database systems.

The assumptions are:

 - The size of the total database will initially be proportional

Mockapetris [Page 3]

RFC 1034 Domain Concepts and Facilities November 1987

 to the number of hosts using the system, but will eventually

 grow to be proportional to the number of users on those hosts

 as mailboxes and other information are added to the domain

 system.

 - Most of the data in the system will change very slowly (e.g.,

 mailbox bindings, host addresses), but that the system should

 be able to deal with subsets that change more rapidly (on the

 order of seconds or minutes).

 - The administrative boundaries used to distribute

 responsibility for the database will usually correspond to

 organizations that have one or more hosts. Each organization

 that has responsibility for a particular set of domains will

 provide redundant name servers, either on the organization's

 own hosts or other hosts that the organization arranges to

 use.

 - Clients of the domain system should be able to identify

 trusted name servers they prefer to use before accepting

 referrals to name servers outside of this "trusted" set.

 - Access to information is more critical than instantaneous

 updates or guarantees of consistency. Hence the update

 process allows updates to percolate out through the users of

 the domain system rather than guaranteeing that all copies are

 simultaneously updated. When updates are unavailable due to

 network or host failure, the usual course is to believe old

 information while continuing efforts to update it. The

 general model is that copies are distributed with timeouts for

 refreshing. The distributor sets the timeout value and the

 recipient of the distribution is responsible for performing

 the refresh. In special situations, very short intervals can

 be specified, or the owner can prohibit copies.

 - In any system that has a distributed database, a particular

 name server may be presented with a query that can only be

 answered by some other server. The two general approaches to

 dealing with this problem are "recursive", in which the first

 server pursues the query for the client at another server, and

 "iterative", in which the server refers the client to another

 server and lets the client pursue the query. Both approaches

 have advantages and disadvantages, but the iterative approach

 is preferred for the datagram style of access. The domain

 system requires implementation of the iterative approach, but

 allows the recursive approach as an option.

Mockapetris [Page 4]

RFC 1034 Domain Concepts and Facilities November 1987

The domain system assumes that all data originates in master files

scattered through the hosts that use the domain system. These master

files are updated by local system administrators. Master files are text

files that are read by a local name server, and hence become available

through the name servers to users of the domain system. The user

programs access name servers through standard programs called resolvers.

The standard format of master files allows them to be exchanged between

hosts (via FTP, mail, or some other mechanism); this facility is useful

when an organization wants a domain, but doesn't want to support a name

server. The organization can maintain the master files locally using a

text editor, transfer them to a foreign host which runs a name server,

and then arrange with the system administrator of the name server to get

the files loaded.

Each host's name servers and resolvers are configured by a local system

administrator [RFC-1033]. For a name server, this configuration data

includes the identity of local master files and instructions on which

non-local master files are to be loaded from foreign servers. The name

server uses the master files or copies to load its zones. For

resolvers, the configuration data identifies the name servers which

should be the primary sources of information.

The domain system defines procedures for accessing the data and for

referrals to other name servers. The domain system also defines

procedures for caching retrieved data and for periodic refreshing of

data defined by the system administrator.

The system administrators provide:

 - The definition of zone boundaries.

 - Master files of data.

 - Updates to master files.

 - Statements of the refresh policies desired.

The domain system provides:

 - Standard formats for resource data.

 - Standard methods for querying the database.

 - Standard methods for name servers to refresh local data from

 foreign name servers.

Mockapetris [Page 5]

RFC 1034 Domain Concepts and Facilities November 1987

2.4. Elements of the DNS

The DNS has three major components:

 - The DOMAIN NAME SPACE and RESOURCE RECORDS, which are

 specifications for a tree structured name space and data

 associated with the names. Conceptually, each node and leaf

 of the domain name space tree names a set of information, and

 query operations are attempts to extract specific types of

 information from a particular set. A query names the domain

 name of interest and describes the type of resource

 information that is desired. For example, the Internet

 uses some of its domain names to identify hosts; queries for

 address resources return Internet host addresses.

 - NAME SERVERS are server programs which hold information about

 the domain tree's structure and set information. A name

 server may cache structure or set information about any part

 of the domain tree, but in general a particular name server

 has complete information about a subset of the domain space,

 and pointers to other name servers that can be used to lead to

 information from any part of the domain tree. Name servers

 know the parts of the domain tree for which they have complete

 information; a name server is said to be an AUTHORITY for

 these parts of the name space. Authoritative information is

 organized into units called ZONEs, and these zones can be

 automatically distributed to the name servers which provide

 redundant service for the data in a zone.

 - RESOLVERS are programs that extract information from name

 servers in response to client requests. Resolvers must be

 able to access at least one name server and use that name

 server's information to answer a query directly, or pursue the

 query using referrals to other name servers. A resolver will

 typically be a system routine that is directly accessible to

 user programs; hence no protocol is necessary between the

 resolver and the user program.

These three components roughly correspond to the three layers or views

of the domain system:

 - From the user's point of view, the domain system is accessed

 through a simple procedure or OS call to a local resolver.

 The domain space consists of a single tree and the user can

 request information from any section of the tree.

 - From the resolver's point of view, the domain system is

 composed of an unknown number of name servers. Each name

Mockapetris [Page 6]

RFC 1034 Domain Concepts and Facilities November 1987

 server has one or more pieces of the whole domain tree's data,

 but the resolver views each of these databases as essentially

 static.

 - From a name server's point of view, the domain system consists

 of separate sets of local information called zones. The name

 server has local copies of some of the zones. The name server

 must periodically refresh its zones from master copies in

 local files or foreign name servers. The name server must

 concurrently process queries that arrive from resolvers.

In the interests of performance, implementations may couple these

functions. For example, a resolver on the same machine as a name server

might share a database consisting of the the zones managed by the name

server and the cache managed by the resolver.

3. DOMAIN NAME SPACE and RESOURCE RECORDS

3.1. Name space specifications and terminology

The domain name space is a tree structure. Each node and leaf on the

tree corresponds to a resource set (which may be empty). The domain

system makes no distinctions between the uses of the interior nodes and

leaves, and this memo uses the term "node" to refer to both.

Each node has a label, which is zero to 63 octets in length. Brother

nodes may not have the same label, although the same label can be used

for nodes which are not brothers. One label is reserved, and that is

the null (i.e., zero length) label used for the root.

The domain name of a node is the list of the labels on the path from the

node to the root of the tree. By convention, the labels that compose a

domain name are printed or read left to right, from the most specific

(lowest, farthest from the root) to the least specific (highest, closest

to the root).

Internally, programs that manipulate domain names should represent them

as sequences of labels, where each label is a length octet followed by

an octet string. Because all domain names end at the root, which has a

null string for a label, these internal representations can use a length

byte of zero to terminate a domain name.

By convention, domain names can be stored with arbitrary case, but

domain name comparisons for all present domain functions are done in a

case-insensitive manner, assuming an ASCII character set, and a high

order zero bit. This means that you are free to create a node with

label "A" or a node with label "a", but not both as brothers; you could

refer to either using "a" or "A". When you receive a domain name or

Mockapetris [Page 7]

RFC 1034 Domain Concepts and Facilities November 1987

label, you should preserve its case. The rationale for this choice is

that we may someday need to add full binary domain names for new

services; existing services would not be changed.

When a user needs to type a domain name, the length of each label is

omitted and the labels are separated by dots ("."). Since a complete

domain name ends with the root label, this leads to a printed form which

ends in a dot. We use this property to distinguish between:

 - a character string which represents a complete domain name

 (often called "absolute"). For example, "poneria.ISI.EDU."

 - a character string that represents the starting labels of a

 domain name which is incomplete, and should be completed by

 local software using knowledge of the local domain (often

 called "relative"). For example, "poneria" used in the

 ISI.EDU domain.

Relative names are either taken relative to a well known origin, or to a

list of domains used as a search list. Relative names appear mostly at

the user interface, where their interpretation varies from

implementation to implementation, and in master files, where they are

relative to a single origin domain name. The most common interpretation

uses the root "." as either the single origin or as one of the members

of the search list, so a multi-label relative name is often one where

the trailing dot has been omitted to save typing.

To simplify implementations, the total number of octets that represent a

domain name (i.e., the sum of all label octets and label lengths) is

limited to 255.

A domain is identified by a domain name, and consists of that part of

the domain name space that is at or below the domain name which

specifies the domain. A domain is a subdomain of another domain if it

is contained within that domain. This relationship can be tested by

seeing if the subdomain's name ends with the containing domain's name.

For example, A.B.C.D is a subdomain of B.C.D, C.D, D, and " ".

3.2. Administrative guidelines on use

As a matter of policy, the DNS technical specifications do not mandate a

particular tree structure or rules for selecting labels; its goal is to

be as general as possible, so that it can be used to build arbitrary

applications. In particular, the system was designed so that the name

space did not have to be organized along the lines of network

boundaries, name servers, etc. The rationale for this is not that the

name space should have no implied semantics, but rather that the choice

of implied semantics should be left open to be used for the problem at

Mockapetris [Page 8]

RFC 1034 Domain Concepts and Facilities November 1987

hand, and that different parts of the tree can have different implied

semantics. For example, the IN-ADDR.ARPA domain is organized and

distributed by network and host address because its role is to translate

from network or host numbers to names; NetBIOS domains [RFC-1001, RFC-

1002] are flat because that is appropriate for that application.

However, there are some guidelines that apply to the "normal" parts of

the name space used for hosts, mailboxes, etc., that will make the name

space more uniform, provide for growth, and minimize problems as

software is converted from the older host table. The political

decisions about the top levels of the tree originated in RFC-920.

Current policy for the top levels is discussed in [RFC-1032]. MILNET

conversion issues are covered in [RFC-1031].

Lower domains which will eventually be broken into multiple zones should

provide branching at the top of the domain so that the eventual

decomposition can be done without renaming. Node labels which use

special characters, leading digits, etc., are likely to break older

software which depends on more restrictive choices.

3.3. Technical guidelines on use

Before the DNS can be used to hold naming information for some kind of

object, two needs must be met:

 - A convention for mapping between object names and domain

 names. This describes how information about an object is

 accessed.

 - RR types and data formats for describing the object.

These rules can be quite simple or fairly complex. Very often, the

designer must take into account existing formats and plan for upward

compatibility for existing usage. Multiple mappings or levels of

mapping may be required.

For hosts, the mapping depends on the existing syntax for host names

which is a subset of the usual text representation for domain names,

together with RR formats for describing host addresses, etc. Because we

need a reliable inverse mapping from address to host name, a special

mapping for addresses into the IN-ADDR.ARPA domain is also defined.

For mailboxes, the mapping is slightly more complex. The usual mail

address <local-part>@<mail-domain> is mapped into a domain name by

converting <local-part> into a single label (regardles of dots it

contains), converting <mail-domain> into a domain name using the usual

text format for domain names (dots denote label breaks), and

concatenating the two to form a single domain name. Thus the mailbox

Mockapetris [Page 9]

RFC 1034 Domain Concepts and Facilities November 1987

HOSTMASTER@SRI-NIC.ARPA is represented as a domain name by

HOSTMASTER.SRI-NIC.ARPA. An appreciation for the reasons behind this

design also must take into account the scheme for mail exchanges [RFC-

974].

The typical user is not concerned with defining these rules, but should

understand that they usually are the result of numerous compromises

between desires for upward compatibility with old usage, interactions

between different object definitions, and the inevitable urge to add new

features when defining the rules. The way the DNS is used to support

some object is often more crucial than the restrictions inherent in the

DNS.

3.4. Example name space

The following figure shows a part of the current domain name space, and

is used in many examples in this RFC. Note that the tree is a very

small subset of the actual name space.

In this example, the root domain has three immediate subdomains: MIL,

EDU, and ARPA. The LCS.MIT.EDU domain has one immediate subdomain named

XX.LCS.MIT.EDU. All of the leaves are also domains.

3.5. Preferred name syntax

The DNS specifications attempt to be as general as possible in the rules

Mockapetris [Page 10]

RFC 1034 Domain Concepts and Facilities November 1987

for constructing domain names. The idea is that the name of any

existing object can be expressed as a domain name with minimal changes.

However, when assigning a domain name for an object, the prudent user

will select a name which satisfies both the rules of the domain system

and any existing rules for the object, whether these rules are published

or implied by existing programs.

For example, when naming a mail domain, the user should satisfy both the

rules of this memo and those in RFC-822. When creating a new host name,

the old rules for HOSTS.TXT should be followed. This avoids problems

when old software is converted to use domain names.

The following syntax will result in fewer problems with many

applications that use domain names (e.g., mail, TELNET).

<domain> ::= <subdomain> | " "

<subdomain> ::= <label> | <subdomain> "." <label>

<label> ::= <letter> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> | "-"

<let-dig> ::= <letter> | <digit>

<letter> ::= any one of the 52 alphabetic characters A through Z in

upper case and a through z in lower case

<digit> ::= any one of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain

names, no significance is attached to the case. That is, two names with

the same spelling but different case are to be treated as if identical.

The labels must follow the rules for ARPANET host names. They must

start with a letter, end with a letter or digit, and have as interior

characters only letters, digits, and hyphen. There are also some

restrictions on the length. Labels must be 63 characters or less.

For example, the following strings identify hosts in the Internet:

A.ISI.EDU XX.LCS.MIT.EDU SRI-NIC.ARPA

3.6. Resource Records

A domain name identifies a node. Each node has a set of resource

Mockapetris [Page 11]

RFC 1034 Domain Concepts and Facilities November 1987

information, which may be empty. The set of resource information

associated with a particular name is composed of separate resource

records (RRs). The order of RRs in a set is not significant, and need

not be preserved by name servers, resolvers, or other parts of the DNS.

When we talk about a specific RR, we assume it has the following:

owner which is the domain name where the RR is found.

type which is an encoded 16 bit value that specifies the type

 of the resource in this resource record. Types refer to

 abstract resources.

 This memo uses the following types:

 A a host address

 CNAME identifies the canonical name of an

 alias

 HINFO identifies the CPU and OS used by a host

 MX identifies a mail exchange for the

 domain. See [RFC-974 for details.

 NS

 the authoritative name server for the domain

 PTR

 a pointer to another part of the domain name space

 SOA

 identifies the start of a zone of authority]

class which is an encoded 16 bit value which identifies a

 protocol family or instance of a protocol.

 This memo uses the following classes:

 IN the Internet system

 CH the Chaos system

TTL which is the time to live of the RR. This field is a 32

 bit integer in units of seconds, an is primarily used by

 resolvers when they cache RRs. The TTL describes how

 long a RR can be cached before it should be discarded.

Mockapetris [Page 12]

RFC 1034 Domain Concepts and Facilities November 1987

RDATA which is the type and sometimes class dependent data

 which describes the resource:

 A For the IN class, a 32 bit IP address

 For the CH class, a domain name followed

 by a 16 bit octal Chaos address.

 CNAME a domain name.

 MX a 16 bit preference value (lower is

 better) followed by a host name willing

 to act as a mail exchange for the owner

 domain.

 NS a host name.

 PTR a domain name.

 SOA several fields.

The owner name is often implicit, rather than forming an integral part

of the RR. For example, many name servers internally form tree or hash

structures for the name space, and chain RRs off nodes. The remaining

RR parts are the fixed header (type, class, TTL) which is consistent for

all RRs, and a variable part (RDATA) that fits the needs of the resource

being described.

The meaning of the TTL field is a time limit on how long an RR can be

kept in a cache. This limit does not apply to authoritative data in

zones; it is also timed out, but by the refreshing policies for the

zone. The TTL is assigned by the administrator for the zone where the

data originates. While short TTLs can be used to minimize caching, and

a zero TTL prohibits caching, the realities of Internet performance

suggest that these times should be on the order of days for the typical

host. If a change can be anticipated, the TTL can be reduced prior to

the change to minimize inconsistency during the change, and then

increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of

binary strings and domain names. The domain names are frequently used

as "pointers" to other data in the DNS.

3.6.1. Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,

and are usually represented in highly encoded form when stored in a name

server or resolver. In this memo, we adopt a style similar to that used

Mockapetris [Page 13]

RFC 1034 Domain Concepts and Facilities November 1987

in master files in order to show the contents of RRs. In this format,

most RRs are shown on a single line, although continuation lines are

possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with

a blank, then the owner is assumed to be the same as that of the

previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class

and type use the mnemonics defined above, and TTL is an integer before

the type field. In order to avoid ambiguity in parsing, type and class

mnemonics are disjoint, TTLs are integers, and the type mnemonic is

always last. The IN class and TTL values are often omitted from examples

in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge

of the typical representation for the data.

For example, we might show the RRs carried in a message as:

 ISI.EDU. MX 10 VENERA.ISI.EDU.

 MX 10 VAXA.ISI.EDU.

 VENERA.ISI.EDU. A 128.9.0.32

 A 10.1.0.52

 VAXA.ISI.EDU. A 10.2.0.27

 A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16 bit number

followed by a domain name. The address RRs use a standard IP address

format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

 XX.LCS.MIT.EDU. IN A 10.0.0.44

 CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different

class.

3.6.2. Aliases and canonical names

In existing systems, hosts and other resources often have several names

that identify the same resource. For example, the names C.ISI.EDU and

USC-ISIC.ARPA both identify the same host. Similarly, in the case of

mailboxes, many organizations provide many names that actually go to the

same mailbox; for example Mockapetris@C.ISI.EDU, Mockapetris@B.ISI.EDU,

Mockapetris [Page 14]

RFC 1034 Domain Concepts and Facilities November 1987

and PVM@ISI.EDU all go to the same mailbox (although the mechanism

behind this is somewhat complicated).

Most of these systems have a notion that one of the equivalent set of

names is the canonical or primary name and all others are aliases.

The domain system provides such a feature using the canonical name

(CNAME) RR. A CNAME RR identifies its owner name as an alias, and

specifies the corresponding canonical name in the RDATA section of the

RR. If a CNAME RR is present at a node, no other data should be

present; this ensures that the data for a canonical name and its aliases

cannot be different. This rule also insures that a cached CNAME can be

used without checking with an authoritative server for other RR types.

CNAME RRs cause special action in DNS software. When a name server

fails to find a desired RR in the resource set associated with the

domain name, it checks to see if the resource set consists of a CNAME

record with a matching class. If so, the name server includes the CNAME

record in the response and restarts the query at the domain name

specified in the data field of the CNAME record. The one exception to

this rule is that queries which match the CNAME type are not restarted.

For example, suppose a name server was processing a query with for USC-

ISIC.ARPA, asking for type A information, and had the following resource

records:

 USC-ISIC.ARPA IN CNAME C.ISI.EDU

 C.ISI.EDU IN A 10.0.0.52

Both of these RRs would be returned in the response to the type A query,

while a type CNAME or * query should return just the CNAME.

Domain names in RRs which point at another name should always point at

the primary name and not the alias. This avoids extra indirections in

accessing information. For example, the address to name RR for the

above host should be:

 52.0.0.10.IN-ADDR.ARPA IN PTR C.ISI.EDU

rather than pointing at USC-ISIC.ARPA. Of course, by the robustness

principle, domain software should not fail when presented with CNAME

chains or loops; CNAME chains should be followed and CNAME loops

signalled as an error.

3.7. Queries

Queries are messages which may be sent to a name server to provoke a

Mockapetris [Page 15]

RFC 1034 Domain Concepts and Facilities November 1987

response. In the Internet, queries are carried in UDP datagrams or over

TCP connections. The response by the name server either answers the

question posed in the query, refers the requester to another set of name

servers, or signals some error condition.

In general, the user does not generate queries directly, but instead

makes a request to a resolver which in turn sends one or more queries to

name servers and deals with the error conditions and referrals that may

result. Of course, the possible questions which can be asked in a query

does shape the kind of service a resolver can provide.

DNS queries and responses are carried in a standard message format. The

message format has a header containing a number of fixed fields which

are always present, and four sections which carry query parameters and

RRs.

The most important field in the header is a four bit field called an

opcode which separates different queries. Of the possible 16 values,

one (standard query) is part of the official protocol, two (inverse

query and status query) are options, one (completion) is obsolete, and

the rest are unassigned.

The four sections are:

Question Carries the query name and other query parameters.

Answer Carries RRs which directly answer the query.

Authority Carries RRs which describe other authoritative servers.

 May optionally carry the SOA RR for the authoritative

 data in the answer section.

Additional Carries RRs which may be helpful in using the RRs in the

 other sections.

Note that the content, but not the format, of these sections varies with

header opcode.

3.7.1. Standard queries

A standard query specifies a target domain name (QNAME), query type

(QTYPE), and query class (QCLASS) and asks for RRs which match. This

type of query makes up such a vast majority of DNS queries that we use

the term "query" to mean standard query unless otherwise specified. The

QTYPE and QCLASS fields are each 16 bits long, and are a superset of

defined types and classes.

Mockapetris [Page 16]

RFC 1034 Domain Concepts and Facilities November 1987

The QTYPE field may contain:

<any type> matches just that type. (e.g., A, PTR).

AXFR special zone transfer QTYPE.

MAILB matches all mail box related RRs (e.g. MB and MG).

* matches all RR types.

The QCLASS field may contain:

<any class> matches just that class (e.g., IN, CH).

* matches aLL RR classes.

Using the query domain name, QTYPE, and QCLASS, the name server looks

for matching RRs. In addition to relevant records, the name server may

return RRs that point toward a name server that has the desired

information or RRs that are expected to be useful in interpreting the

relevant RRs. For example, a name server that doesn't have the

requested information may know a name server that does; a name server

that returns a domain name in a relevant RR may also return the RR that

binds that domain name to an address.

For example, a mailer tying to send mail to Mockapetris@ISI.EDU might

ask the resolver for mail information about ISI.EDU, resulting in a

query for QNAME=ISI.EDU, QTYPE=MX, QCLASS=IN. The response's answer

section would be:

 ISI.EDU. MX 10 VENERA.ISI.EDU.

 MX 10 VAXA.ISI.EDU.

while the additional section might be:

 VAXA.ISI.EDU. A 10.2.0.27

 A 128.9.0.33

 VENERA.ISI.EDU. A 10.1.0.52

 A 128.9.0.32

Because the server assumes that if the requester wants mail exchange

information, it will probably want the addresses of the mail exchanges

soon afterward.

Note that the QCLASS=* construct requires special interpretation

regarding authority. Since a particular name server may not know all of

the classes available in the domain system, it can never know if it is

authoritative for all classes. Hence responses to QCLASS=* queries can

Mockapetris [Page 17]

RFC 1034 Domain Concepts and Facilities November 1987

never be authoritative.

3.7.2. Inverse queries (Optional)

Name servers may also support inverse queries that map a particular

resource to a domain name or domain names that have that resource. For

example, while a standard query might map a domain name to a SOA RR, the

corresponding inverse query might map the SOA RR back to the domain

name.

Implementation of this service is optional in a name server, but all

name servers must at least be able to understand an inverse query

message and return a not-implemented error response.

The domain system cannot guarantee the completeness or uniqueness of

inverse queries because the domain system is organized by domain name

rather than by host address or any other resource type. Inverse queries

are primarily useful for debugging and database maintenance activities.

Inverse queries may not return the proper TTL, and do not indicate cases

where the identified RR is one of a set (for example, one address for a

host having multiple addresses). Therefore, the RRs returned in inverse

queries should never be cached.

Inverse queries are NOT an acceptable method for mapping host addresses

to host names; use the IN-ADDR.ARPA domain instead.

A detailed discussion of inverse queries is contained in [RFC-1035].

3.8. Status queries (Experimental)

To be defined.

3.9. Completion queries (Obsolete)

The optional completion services described in RFCs 882 and 883 have been

deleted. Redesigned services may become available in the future, or the

opcodes may be reclaimed for other use.

4. NAME SERVERS

4.1. Introduction

Name servers are the repositories of information that make up the domain

database. The database is divided up into sections called zones, which

are distributed among the name servers. While name servers can have

several optional functions and sources of data, the essential task of a

name server is to answer queries using data in its zones. By design,

Mockapetris [Page 18]

RFC 1034 Domain Concepts and Facilities November 1987

name servers can answer queries in a simple manner; the response can

always be generated using only local data, and either contains the

answer to the question or a referral to other name servers "closer" to

the desired information.

A given zone will be available from several name servers to insure its

availability in spite of host or communication link failure. By

administrative fiat, we require every zone to be available on at least

two servers, and many zones have more redundancy than that.

A given name server will typically support one or more zones, but this

gives it authoritative information about only a small section of the

domain tree. It may also have some cached non-authoritative data about

other parts of the tree. The name server marks its responses to queries

so that the requester can tell whether the response comes from

authoritative data or not.

4.2. How the database is divided into zones

The domain database is partitioned in two ways: by class, and by "cuts"

made in the name space between nodes.

The class partition is simple. The database for any class is organized,

delegated, and maintained separately from all other classes. Since, by

convention, the name spaces are the same for all classes, the separate

classes can be thought of as an array of parallel namespace trees. Note

that the data attached to nodes will be different for these different

parallel classes. The most common reasons for creating a new class are

the necessity for a new data format for existing types or a desire for a

separately managed version of the existing name space.

Within a class, "cuts" in the name space can be made between any two

adjacent nodes. After all cuts are made, each group of connected name

space is a separate zone. The zone is said to be authoritative for all

names in the connected region. Note that the "cuts" in the name space

may be in different places for different classes, the name servers may

be different, etc.

These rules mean that every zone has at least one node, and hence domain

name, for which it is authoritative, and all of the nodes in a

particular zone are connected. Given, the tree structure, every zone

has a highest node which is closer to the root than any other node in

the zone. The name of this node is often used to identify the zone.

It would be possible, though not particularly useful, to partition the

name space so that each domain name was in a separate zone or so that

all nodes were in a single zone. Instead, the database is partitioned

at points where a particular organization wants to take over control of

Mockapetris [Page 19]

RFC 1034 Domain Concepts and Facilities November 1987

a subtree. Once an organization controls its own zone it can

unilaterally change the data in the zone, grow new tree sections

connected to the zone, delete existing nodes, or delegate new subzones

under its zone.

If the organization has substructure, it may want to make further

internal partitions to achieve nested delegations of name space control.

In some cases, such divisions are made purely to make database

maintenance more convenient.

4.2.1. Technical considerations

The data that describes a zone has four major parts:

 - Authoritative data for all nodes within the zone.

 - Data that defines the top node of the zone (can be thought of

 as part of the authoritative data).

 - Data that describes delegated subzones, i.e., cuts around the

 bottom of the zone.

 - Data that allows access to name servers for subzones

 (sometimes called "glue" data).

All of this data is expressed in the form of RRs, so a zone can be

completely described in terms of a set of RRs. Whole zones can be

transferred between name servers by transferring the RRs, either carried

in a series of messages or by FTPing a master file which is a textual

representation.

The authoritative data for a zone is simply all of the RRs attached to

all of the nodes from the top node of the zone down to leaf nodes or

nodes above cuts around the bottom edge of the zone.

Though logically part of the authoritative data, the RRs that describe

the top node of the zone are especially important to the zone's

management. These RRs are of two types: name server RRs that list, one

per RR, all of the servers for the zone, and a single SOA RR that

describes zone management parameters.

The RRs that describe cuts around the bottom of the zone are NS RRs that

name the servers for the subzones. Since the cuts are between nodes,

these RRs are NOT part of the authoritative data of the zone, and should

be exactly the same as the corresponding RRs in the top node of the

subzone. Since name servers are always associated with zone boundaries,

NS RRs are only found at nodes which are the top node of some zone. In

the data that makes up a zone, NS RRs are found at the top node of the

Mockapetris [Page 20]

RFC 1034 Domain Concepts and Facilities November 1987

zone (and are authoritative) and at cuts around the bottom of the zone

(where they are not authoritative), but never in between.

One of the goals of the zone structure is that any zone have all the

data required to set up communications with the name servers for any

subzones. That is, parent zones have all the information needed to

access servers for their children zones. The NS RRs that name the

servers for subzones are often not enough for this task since they name

the servers, but do not give their addresses. In particular, if the

name of the name server is itself in the subzone, we could be faced with

the situation where the NS RRs tell us that in order to learn a name

server's address, we should contact the server using the address we wish

to learn. To fix this problem, a zone contains "glue" RRs which are not

part of the authoritative data, and are address RRs for the servers.

These RRs are only necessary if the name server's name is "below" the

cut, and are only used as part of a referral response.

4.2.2. Administrative considerations

When some organization wants to control its own domain, the first step

is to identify the proper parent zone, and get the parent zone's owners

to agree to the delegation of control. While there are no particular

technical constraints dealing with where in the tree this can be done,

there are some administrative groupings discussed in [RFC-1032] which

deal with top level organization, and middle level zones are free to

create their own rules. For example, one university might choose to use

a single zone, while another might choose to organize by subzones

dedicated to individual departments or schools. [RFC-1033] catalogs

available DNS software an discusses administration procedures.

Once the proper name for the new subzone is selected, the new owners

should be required to demonstrate redundant name server support. Note

that there is no requirement that the servers for a zone reside in a

host which has a name in that domain. In many cases, a zone will be

more accessible to the internet at large if its servers are widely

distributed rather than being within the physical facilities controlled

by the same organization that manages the zone. For example, in the

current DNS, one of the name servers for the United Kingdom, or UK

domain, is found in the US. This allows US hosts to get UK data without

using limited transatlantic bandwidth.

As the last installation step, the delegation NS RRs and glue RRs

necessary to make the delegation effective should be added to the parent

zone. The administrators of both zones should insure that the NS and

glue RRs which mark both sides of the cut are consistent and remain so.

4.3. Name server internals

Mockapetris [Page 21]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.1. Queries and responses

The principal activity of name servers is to answer standard queries.

Both the query and its response are carried in a standard message format

which is described in [RFC-1035]. The query contains a QTYPE, QCLASS,

and QNAME, which describe the types and classes of desired information

and the name of interest.

The way that the name server answers the query depends upon whether it

is operating in recursive mode or not:

 - The simplest mode for the server is non-recursive, since it

 can answer queries using only local information: the response

 contains an error, the answer, or a referral to some other

 server "closer" to the answer. All name servers must

 implement non-recursive queries.

 - The simplest mode for the client is recursive, since in this

 mode the name server acts in the role of a resolver and

 returns either an error or the answer, but never referrals.

 This service is optional in a name server, and the name server

 may also choose to restrict the clients which can use

 recursive mode.

Recursive service is helpful in several situations:

 - a relatively simple requester that lacks the ability to use

 anything other than a direct answer to the question.

 - a request that needs to cross protocol or other boundaries and

 can be sent to a server which can act as intermediary.

 - a network where we want to concentrate the cache rather than

 having a separate cache for each client.

Non-recursive service is appropriate if the requester is capable of

pursuing referrals and interested in information which will aid future

requests.

The use of recursive mode is limited to cases where both the client and

the name server agree to its use. The agreement is negotiated through

the use of two bits in query and response messages:

 - The recursion available, or RA bit, is set or cleared by a

 name server in all responses. The bit is true if the name

 server is willing to provide recursive service for the client,

 regardless of whether the client requested recursive service.

 That is, RA signals availability rather than use.

Mockapetris [Page 22]

RFC 1034 Domain Concepts and Facilities November 1987

 - Queries contain a bit called recursion desired or RD. This

 bit specifies specifies whether the requester wants recursive

 service for this query. Clients may request recursive service

 from any name server, though they should depend upon receiving

 it only from servers which have previously sent an RA, or

 servers which have agreed to provide service through private

 agreement or some other means outside of the DNS protocol.

The recursive mode occurs when a query with RD set arrives at a server

which is willing to provide recursive service; the client can verify

that recursive mode was used by checking that both RA and RD are set in

the reply. Note that the name server should never perform recursive

service unless asked via RD, since this interferes with trouble shooting

of name servers and their databases.

If recursive service is requested and available, the recursive response

to a query will be one of the following:

 - The answer to the query, possibly preface by one or more CNAME

 RRs that specify aliases encountered on the way to an answer.

 - A name error indicating that the name does not exist. This

 may include CNAME RRs that indicate that the original query

 name was an alias for a name which does not exist.

 - A temporary error indication.

If recursive service is not requested or is not available, the non-

recursive response will be one of the following:

 - An authoritative name error indicating that the name does not

 exist.

 - A temporary error indication.

 - Some combination of:

 RRs that answer the question, together with an indication

 whether the data comes from a zone or is cached.

 A referral to name servers which have zones which are closer

 ancestors to the name than the server sending the reply.

 - RRs that the name server thinks will prove useful to the

 requester.

Mockapetris [Page 23]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.2. Algorithm

The actual algorithm used by the name server will depend on the local OS

and data structures used to store RRs. The following algorithm assumes

that the RRs are organized in several tree structures, one for each

zone, and another for the cache:

 1. Set or clear the value of recursion available in the response

 depending on whether the name server is willing to provide

 recursive service. If recursive service is available and

 requested via the RD bit in the query, go to step 5,

 otherwise step 2.

 2. Search the available zones for the zone which is the nearest

 ancestor to QNAME. If such a zone is found, go to step 3,

 otherwise step 4.

 3. Start matching down, label by label, in the zone. The

 matching process can terminate several ways:

 a. If the whole of QNAME is matched, we have found the

 node.

 If the data at the node is a CNAME, and QTYPE doesn't

 match CNAME, copy the CNAME RR into the answer section

 of the response, change QNAME to the canonical name in

 the CNAME RR, and go back to step 1.

 Otherwise, copy all RRs which match QTYPE into the

 answer section and go to step 6.

 b. If a match would take us out of the authoritative data,

 we have a referral. This happens when we encounter a

 node with NS RRs marking cuts along the bottom of a

 zone.

 Copy the NS RRs for the subzone into the authority

 section of the reply. Put whatever addresses are

 available into the additional section, using glue RRs

 if the addresses are not available from authoritative

 data or the cache. Go to step 4.

 c. If at some label, a match is impossible (i.e., the

 corresponding label does not exist), look to see if a

 the "*" label exists.

 If the "*" label does not exist, check whether the name

 we are looking for is the original QNAME in the query

Mockapetris [Page 24]

RFC 1034 Domain Concepts and Facilities November 1987

 or a name we have followed due to a CNAME. If the name

 is original, set an authoritative name error in the

 response and exit. Otherwise just exit.

 If the "*" label does exist, match RRs at that node

 against QTYPE. If any match, copy them into the answer

 section, but set the owner of the RR to be QNAME, and

 not the node with the "*" label. Go to step 6.

 4. Start matching down in the cache. If QNAME is found in the

 cache, copy all RRs attached to it that match QTYPE into the

 answer section. If there was no delegation from

 authoritative data, look for the best one from the cache, and

 put it in the authority section. Go to step 6.

 5. Using the local resolver or a copy of its algorithm (see

 resolver section of this memo) to answer the query. Store

 the results, including any intermediate CNAMEs, in the answer

 section of the response.

 6. Using local data only, attempt to add other RRs which may be

 useful to the additional section of the query. Exit.

4.3.3. Wildcards

In the previous algorithm, special treatment was given to RRs with owner

names starting with the label "*". Such RRs are called wildcards.

Wildcard RRs can be thought of as instructions for synthesizing RRs.

When the appropriate conditions are met, the name server creates RRs

with an owner name equal to the query name and contents taken from the

wildcard RRs.

This facility is most often used to create a zone which will be used to

forward mail from the Internet to some other mail system. The general

idea is that any name in that zone which is presented to server in a

query will be assumed to exist, with certain properties, unless explicit

evidence exists to the contrary. Note that the use of the term zone

here, instead of domain, is intentional; such defaults do not propagate

across zone boundaries, although a subzone may choose to achieve that

appearance by setting up similar defaults.

The contents of the wildcard RRs follows the usual rules and formats for

RRs. The wildcards in the zone have an owner name that controls the

query names they will match. The owner name of the wildcard RRs is of

the form "*.<anydomain>", where <anydomain> is any domain name.

<anydomain> should not contain other * labels, and should be in the

authoritative data of the zone. The wildcards potentially apply to

descendants of <anydomain>, but not to <anydomain> itself. Another way

Mockapetris [Page 25]

RFC 1034 Domain Concepts and Facilities November 1987

to look at this is that the "*" label always matches at least one whole

label and sometimes more, but always whole labels.

Wildcard RRs do not apply:

 - When the query is in another zone. That is, delegation cancels

 the wildcard defaults.

 - When the query name or a name between the wildcard domain and

 the query name is know to exist. For example, if a wildcard

 RR has an owner name of "*.X", and the zone also contains RRs

 attached to B.X, the wildcards would apply to queries for name

 Z.X (presuming there is no explicit information for Z.X), but

 not to B.X, A.B.X, or X.

A * label appearing in a query name has no special effect, but can be

used to test for wildcards in an authoritative zone; such a query is the

only way to get a response containing RRs with an owner name with * in

it. The result of such a query should not be cached.

Note that the contents of the wildcard RRs are not modified when used to

synthesize RRs.

To illustrate the use of wildcard RRs, suppose a large company with a

large, non-IP/TCP, network wanted to create a mail gateway. If the

company was called X.COM, and IP/TCP capable gateway machine was called

A.X.COM, the following RRs might be entered into the COM zone:

 X.COM MX 10 A.X.COM

 *.X.COM MX 10 A.X.COM

 A.X.COM A 1.2.3.4

 A.X.COM MX 10 A.X.COM

 *.A.X.COM MX 10 A.X.COM

This would cause any MX query for any domain name ending in X.COM to

return an MX RR pointing at A.X.COM. Two wildcard RRs are required

since the effect of the wildcard at *.X.COM is inhibited in the A.X.COM

subtree by the explicit data for A.X.COM. Note also that the explicit

MX data at X.COM and A.X.COM is required, and that none of the RRs above

would match a query name of XX.COM.

4.3.4. Negative response caching (Optional)

The DNS provides an optional service which allows name servers to

distribute, and resolvers to cache, negative results with TTLs. For

Mockapetris [Page 26]

RFC 1034 Domain Concepts and Facilities November 1987

example, a name server can distribute a TTL along with a name error

indication, and a resolver receiving such information is allowed to

assume that the name does not exist during the TTL period without

consulting authoritative data. Similarly, a resolver can make a query

with a QTYPE which matches multiple types, and cache the fact that some

of the types are not present.

This feature can be particularly important in a system which implements

naming shorthands that use search lists beacuse a popular shorthand,

which happens to require a suffix toward the end of the search list,

will generate multiple name errors whenever it is used.

The method is that a name server may add an SOA RR to the additional

section of a response when that response is authoritative. The SOA must

be that of the zone which was the source of the authoritative data in

the answer section, or name error if applicable. The MINIMUM field of

the SOA controls the length of time that the negative result may be

cached.

Note that in some circumstances, the answer section may contain multiple

owner names. In this case, the SOA mechanism should only be used for

the data which matches QNAME, which is the only authoritative data in

this section.

Name servers and resolvers should never attempt to add SOAs to the

additional section of a non-authoritative response, or attempt to infer

results which are not directly stated in an authoritative response.

There are several reasons for this, including: cached information isn't

usually enough to match up RRs and their zone names, SOA RRs may be

cached due to direct SOA queries, and name servers are not required to

output the SOAs in the authority section.

This feature is optional, although a refined version is expected to

become part of the standard protocol in the future. Name servers are

not required to add the SOA RRs in all authoritative responses, nor are

resolvers required to cache negative results. Both are recommended.

All resolvers and recursive name servers are required to at least be

able to ignore the SOA RR when it is present in a response.

Some experiments have also been proposed which will use this feature.

The idea is that if cached data is known to come from a particular zone,

and if an authoritative copy of the zone's SOA is obtained, and if the

zone's SERIAL has not changed since the data was cached, then the TTL of

the cached data can be reset to the zone MINIMUM value if it is smaller.

This usage is mentioned for planning purposes only, and is not

recommended as yet.

Mockapetris [Page 27]

RFC 1034 Domain Concepts and Facilities November 1987

4.3.5. Zone maintenance and transfers

Part of the job of a zone administrator is to maintain the zones at all

of the name servers which are authoritative for the zone. When the

inevitable changes are made, they must be distributed to all of the name

servers. While this distribution can be accomplished using FTP or some

other ad hoc procedure, the preferred method is the zone transfer part

of the DNS protocol.

The general model of automatic zone transfer or refreshing is that one

of the name servers is the master or primary for the zone. Changes are

coordinated at the primary, typically by editing a master file for the

zone. After editing, the administrator signals the master server to

load the new zone. The other non-master or secondary servers for the

zone periodically check for changes (at a selectable interval) and

obtain new zone copies when changes have been made.

To detect changes, secondaries just check the SERIAL field of the SOA

for the zone. In addition to whatever other changes are made, the

SERIAL field in the SOA of the zone is always advanced whenever any

change is made to the zone. The advancing can be a simple increment, or

could be based on the write date and time of the master file, etc. The

purpose is to make it possible to determine which of two copies of a

zone is more recent by comparing serial numbers. Serial number advances

and comparisons use sequence space arithmetic, so there is a theoretic

limit on how fast a zone can be updated, basically that old copies must

die out before the serial number covers half of its 32 bit range. In

practice, the only concern is that the compare operation deals properly

with comparisons around the boundary between the most positive and most

negative 32 bit numbers.

The periodic polling of the secondary servers is controlled by

parameters in the SOA RR for the zone, which set the minimum acceptable

polling intervals. The parameters are called REFRESH, RETRY, and

EXPIRE. Whenever a new zone is loaded in a secondary, the secondary

waits REFRESH seconds before checking with the primary for a new serial.

If this check cannot be completed, new checks are started every RETRY

seconds. The check is a simple query to the primary for the SOA RR of

the zone. If the serial field in the secondary's zone copy is equal to

the serial returned by the primary, then no changes have occurred, and

the REFRESH interval wait is restarted. If the secondary finds it

impossible to perform a serial check for the EXPIRE interval, it must

assume that its copy of the zone is obsolete an discard it.

When the poll shows that the zone has changed, then the secondary server

must request a zone transfer via an AXFR request for the zone. The AXFR

may cause an error, such as refused, but normally is answered by a

sequence of response messages. The first and last messages must contain

Mockapetris [Page 28]

RFC 1034 Domain Concepts and Facilities November 1987

the data for the top authoritative node of the zone. Intermediate

messages carry all of the other RRs from the zone, including both

authoritative and non-authoritative RRs. The stream of messages allows

the secondary to construct a copy of the zone. Because accuracy is

essential, TCP or some other reliable protocol must be used for AXFR

requests.

Each secondary server is required to perform the following operations

against the master, but may also optionally perform these operations

against other secondary servers. This strategy can improve the transfer

process when the primary is unavailable due to host downtime or network

problems, or when a secondary server has better network access to an

"intermediate" secondary than to the primary.

5. RESOLVERS

5.1. Introduction

Resolvers are programs that interface user programs to domain name

servers. In the simplest case, a resolver receives a request from a

user program (e.g., mail programs, TELNET, FTP) in the form of a

subroutine call, system call etc., and returns the desired information

in a form compatible with the local host's data formats.

The resolver is located on the same machine as the program that requests

the resolver's services, but it may need to consult name servers on

other hosts. Because a resolver may need to consult several name

servers, or may have the requested information in a local cache, the

amount of time that a resolver will take to complete can vary quite a

bit, from milliseconds to several seconds.

A very important goal of the resolver is to eliminate network delay and

name server load from most requests by answering them from its cache of

prior results. It follows that caches which are shared by multiple

processes, users, machines, etc., are more efficient than non-shared

caches.

5.2. Client-resolver interface

5.2.1. Typical functions

The client interface to the resolver is influenced by the local host's

conventions, but the typical resolver-client interface has three

functions:

 1. Host name to host address translation.

 This function is often defined to mimic a previous HOSTS.TXT

Mockapetris [Page 29]

RFC 1034 Domain Concepts and Facilities November 1987

 based function. Given a character string, the caller wants

 one or more 32 bit IP addresses. Under the DNS, it

 translates into a request for type A RRs. Since the DNS does

 not preserve the order of RRs, this function may choose to

 sort the returned addresses or select the "best" address if

 the service returns only one choice to the client. Note that

 a multiple address return is recommended, but a single

 address may be the only way to emulate prior HOSTS.TXT

 services.

 2. Host address to host name translation

 This function will often follow the form of previous

 functions. Given a 32 bit IP address, the caller wants a

 character string. The octets of the IP address are reversed,

 used as name components, and suffixed with "IN-ADDR.ARPA". A

 type PTR query is used to get the RR with the primary name of

 the host. For example, a request for the host name

 corresponding to IP address 1.2.3.4 looks for PTR RRs for

 domain name "4.3.2.1.IN-ADDR.ARPA".

 3. General lookup function

 This function retrieves arbitrary information from the DNS,

 and has no counterpart in previous systems. The caller

 supplies a QNAME, QTYPE, and QCLASS, and wants all of the

 matching RRs. This function will often use the DNS format

 for all RR data instead of the local host's, and returns all

 RR content (e.g., TTL) instead of a processed form with local

 quoting conventions.

When the resolver performs the indicated function, it usually has one of

the following results to pass back to the client:

 - One or more RRs giving the requested data.

 In this case the resolver returns the answer in the

 appropriate format.

 - A name error (NE).

 This happens when the referenced name does not exist. For

 example, a user may have mistyped a host name.

 - A data not found error.

 This happens when the referenced name exists, but data of the

 appropriate type does not. For example, a host address

Mockapetris [Page 30]

RFC 1034 Domain Concepts and Facilities November 1987

 function applied to a mailbox name would return this error

 since the name exists, but no address RR is present.

It is important to note that the functions for translating between host

names and addresses may combine the "name error" and "data not found"

error conditions into a single type of error return, but the general

function should not. One reason for this is that applications may ask

first for one type of information about a name followed by a second

request to the same name for some other type of information; if the two

errors are combined, then useless queries may slow the application.

5.2.2. Aliases

While attempting to resolve a particular request, the resolver may find

that the name in question is an alias. For example, the resolver might

find that the name given for host name to address translation is an

alias when it finds the CNAME RR. If possible, the alias condition

should be signalled back from the resolver to the client.

In most cases a resolver simply restarts the query at the new name when

it encounters a CNAME. However, when performing the general function,

the resolver should not pursue aliases when the CNAME RR matches the

query type. This allows queries which ask whether an alias is present.

For example, if the query type is CNAME, the user is interested in the

CNAME RR itself, and not the RRs at the name it points to.

Several special conditions can occur with aliases. Multiple levels of

aliases should be avoided due to their lack of efficiency, but should

not be signalled as an error. Alias loops and aliases which point to

non-existent names should be caught and an error condition passed back

to the client.

5.2.3. Temporary failures

In a less than perfect world, all resolvers will occasionally be unable

to resolve a particular request. This condition can be caused by a

resolver which becomes separated from the rest of the network due to a

link failure or gateway problem, or less often by coincident failure or

unavailability of all servers for a particular domain.

It is essential that this sort of condition should not be signalled as a

name or data not present error to applications. This sort of behavior

is annoying to humans, and can wreak havoc when mail systems use the

DNS.

While in some cases it is possible to deal with such a temporary problem

by blocking the request indefinitely, this is usually not a good choice,

particularly when the client is a server process that could move on to

Mockapetris [Page 31]

RFC 1034 Domain Concepts and Facilities November 1987

other tasks. The recommended solution is to always have temporary

failure as one of the possible results of a resolver function, even

though this may make emulation of existing HOSTS.TXT functions more

difficult.

5.3. Resolver internals

Every resolver implementation uses slightly different algorithms, and

typically spends much more logic dealing with errors of various sorts

than typical occurances. This section outlines a recommended basic

strategy for resolver operation, but leaves details to [RFC-1035].

5.3.1. Stub resolvers

One option for implementing a resolver is to move the resolution

function out of the local machine and into a name server which supports

recursive queries. This can provide an easy method of providing domain

service in a PC which lacks the resources to perform the resolver

function, or can centralize the cache for a whole local network or

organization.

All that the remaining stub needs is a list of name server addresses

that will perform the recursive requests. This type of resolver

presumably needs the information in a configuration file, since it

probably lacks the sophistication to locate it in the domain database.

The user also needs to verify that the listed servers will perform the

recursive service; a name server is free to refuse to perform recursive

services for any or all clients. The user should consult the local

system administrator to find name servers willing to perform the

service.

This type of service suffers from some drawbacks. Since the recursive

requests may take an arbitrary amount of time to perform, the stub may

have difficulty optimizing retransmission intervals to deal with both

lost UDP packets and dead servers; the name server can be easily

overloaded by too zealous a stub if it interprets retransmissions as new

requests. Use of TCP may be an answer, but TCP may well place burdens

on the host's capabilities which are similar to those of a real

resolver.

5.3.2. Resources

In addition to its own resources, the resolver may also have shared

access to zones maintained by a local name server. This gives the

resolver the advantage of more rapid access, but the resolver must be

careful to never let cached information override zone data. In this

discussion the term "local information" is meant to mean the union of

the cache and such shared zones, with the understanding that

Mockapetris [Page 32]

RFC 1034 Domain Concepts and Facilities November 1987

authoritative data is always used in preference to cached data when both

are present.

The following resolver algorithm assumes that all functions have been

converted to a general lookup function, and uses the following data

structures to represent the state of a request in progress in the

resolver:

SNAME the domain name we are searching for.

STYPE the QTYPE of the search request.

SCLASS the QCLASS of the search request.

SLIST a structure which describes the name servers and the

 zone which the resolver is currently trying to query.

 This structure keeps track of the resolver's current

 best guess about which name servers hold the desired

 information; it is updated when arriving information

 changes the guess. This structure includes the

 equivalent of a zone name, the known name servers for

 the zone, the known addresses for the name servers, and

 history information which can be used to suggest which

 server is likely to be the best one to try next. The

 zone name equivalent is a match count of the number of

 labels from the root down which SNAME has in common with

 the zone being queried; this is used as a measure of how

 "close" the resolver is to SNAME.

SBELT a "safety belt" structure of the same form as SLIST,

 which is initialized from a configuration file, and

 lists servers which should be used when the resolver

 doesn't have any local information to guide name server

 selection. The match count will be -1 to indicate that

 no labels are known to match.

CACHE A structure which stores the results from previous

 responses. Since resolvers are responsible for

 discarding old RRs whose TTL has expired, most

 implementations convert the interval specified in

 arriving RRs to some sort of absolute time when the RR

 is stored in the cache. Instead of counting the TTLs

 down individually, the resolver just ignores or discards

 old RRs when it runs across them in the course of a

 search, or discards them during periodic sweeps to

 reclaim the memory consumed by old RRs.

Mockapetris [Page 33]

RFC 1034 Domain Concepts and Facilities November 1987

5.3.3. Algorithm

The top level algorithm has four steps:

 1. See if the answer is in local information, and if so return

 it to the client.

 2. Find the best servers to ask.

 3. Send them queries until one returns a response.

 4. Analyze the response, either:

 a. if the response answers the question or contains a name

 error, cache the data as well as returning it back to

 the client.

 b. if the response contains a better delegation to other

 servers, cache the delegation information, and go to

 step 2.

 c. if the response shows a CNAME and that is not the

 answer itself, cache the CNAME, change the SNAME to the

 canonical name in the CNAME RR and go to step 1.

 d. if the response shows a servers failure or other

 bizarre contents, delete the server from the SLIST and

 go back to step 3.

Step 1 searches the cache for the desired data. If the data is in the

cache, it is assumed to be good enough for normal use. Some resolvers

have an option at the user interface which will force the resolver to

ignore the cached data and consult with an authoritative server. This

is not recommended as the default. If the resolver has direct access to

a name server's zones, it should check to see if the desired data is

present in authoritative form, and if so, use the authoritative data in

preference to cached data.

Step 2 looks for a name server to ask for the required data. The

general strategy is to look for locally-available name server RRs,

starting at SNAME, then the parent domain name of SNAME, the

grandparent, and so on toward the root. Thus if SNAME were

Mockapetris.ISI.EDU, this step would look for NS RRs for

Mockapetris.ISI.EDU, then ISI.EDU, then EDU, and then . (the root).

These NS RRs list the names of hosts for a zone at or above SNAME. Copy

the names into SLIST. Set up their addresses using local data. It may

be the case that the addresses are not available. The resolver has many

choices here; the best is to start parallel resolver processes looking

Mockapetris [Page 34]

RFC 1034 Domain Concepts and Facilities November 1987

for the addresses while continuing onward with the addresses which are

available. Obviously, the design choices and options are complicated

and a function of the local host's capabilities. The recommended

priorities for the resolver designer are:

 1. Bound the amount of work (packets sent, parallel processes

 started) so that a request can't get into an infinite loop or

 start off a chain reaction of requests or queries with other

 implementations EVEN IF SOMEONE HAS INCORRECTLY CONFIGURED

 SOME DATA.

 2. Get back an answer if at all possible.

 3. Avoid unnecessary transmissions.

 4. Get the answer as quickly as possible.

If the search for NS RRs fails, then the resolver initializes SLIST from

the safety belt SBELT. The basic idea is that when the resolver has no

idea what servers to ask, it should use information from a configuration

file that lists several servers which are expected to be helpful.

Although there are special situations, the usual choice is two of the

root servers and two of the servers for the host's domain. The reason

for two of each is for redundancy. The root servers will provide

eventual access to all of the domain space. The two local servers will

allow the resolver to continue to resolve local names if the local

network becomes isolated from the internet due to gateway or link

failure.

In addition to the names and addresses of the servers, the SLIST data

structure can be sorted to use the best servers first, and to insure

that all addresses of all servers are used in a round-robin manner. The

sorting can be a simple function of preferring addresses on the local

network over others, or may involve statistics from past events, such as

previous response times and batting averages.

Step 3 sends out queries until a response is received. The strategy is

to cycle around all of the addresses for all of the servers with a

timeout between each transmission. In practice it is important to use

all addresses of a multihomed host, and too aggressive a retransmission

policy actually slows response when used by multiple resolvers

contending for the same name server and even occasionally for a single

resolver. SLIST typically contains data values to control the timeouts

and keep track of previous transmissions.

Step 4 involves analyzing responses. The resolver should be highly

paranoid in its parsing of responses. It should also check that the

response matches the query it sent using the ID field in the response.

Mockapetris [Page 35]

RFC 1034 Domain Concepts and Facilities November 1987

The ideal answer is one from a server authoritative for the query which

either gives the required data or a name error. The data is passed back

to the user and entered in the cache for future use if its TTL is

greater than zero.

If the response shows a delegation, the resolver should check to see

that the delegation is "closer" to the answer than the servers in SLIST

are. This can be done by comparing the match count in SLIST with that

computed from SNAME and the NS RRs in the delegation. If not, the reply

is bogus and should be ignored. If the delegation is valid the NS

delegation RRs and any address RRs for the servers should be cached.

The name servers are entered in the SLIST, and the search is restarted.

If the response contains a CNAME, the search is restarted at the CNAME

unless the response has the data for the canonical name or if the CNAME

is the answer itself.

Details and implementation hints can be found in [RFC-1035].

6. A SCENARIO

In our sample domain space, suppose we wanted separate administrative

control for the root, MIL, EDU, MIT.EDU and ISI.EDU zones. We might

allocate name servers as follows:

Mockapetris [Page 36]

RFC 1034 Domain Concepts and Facilities November 1987

In this example, the authoritative name server is shown in parentheses

at the point in the domain tree at which is assumes control.

Thus the root name servers are on C.ISI.EDU, SRI-NIC.ARPA, and

A.ISI.EDU. The MIL domain is served by SRI-NIC.ARPA and A.ISI.EDU. The

EDU domain is served by SRI-NIC.ARPA. and C.ISI.EDU. Note that servers

may have zones which are contiguous or disjoint. In this scenario,

C.ISI.EDU has contiguous zones at the root and EDU domains. A.ISI.EDU

has contiguous zones at the root and MIL domains, but also has a non-

contiguous zone at ISI.EDU.

6.1. C.ISI.EDU name server

C.ISI.EDU is a name server for the root, MIL, and EDU domains of the IN

class, and would have zones for these domains. The zone data for the

root domain might be:

 . IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (

 870611 ;serial

 1800 ;refresh every 30 min

 300 ;retry every 5 min

 604800 ;expire after a week

 86400) ;minimum of a day

 NS A.ISI.EDU.

 NS C.ISI.EDU.

 NS SRI-NIC.ARPA.

 MIL. 86400 NS SRI-NIC.ARPA.

 86400 NS A.ISI.EDU.

 EDU. 86400 NS SRI-NIC.ARPA.

 86400 NS C.ISI.EDU.

 SRI-NIC.ARPA. A 26.0.0.73

 A 10.0.0.51

 MX 0 SRI-NIC.ARPA.

 HINFO DEC-2060 TOPS20

 ACC.ARPA. A 26.6.0.65

 HINFO PDP-11/70 UNIX

 MX 10 ACC.ARPA.

 USC-ISIC.ARPA. CNAME C.ISI.EDU.

 73.0.0.26.IN-ADDR.ARPA. PTR SRI-NIC.ARPA.

 65.0.6.26.IN-ADDR.ARPA. PTR ACC.ARPA.

 51.0.0.10.IN-ADDR.ARPA. PTR SRI-NIC.ARPA.

 52.0.0.10.IN-ADDR.ARPA. PTR C.ISI.EDU.

Mockapetris [Page 37]

RFC 1034 Domain Concepts and Facilities November 1987

 103.0.3.26.IN-ADDR.ARPA. PTR A.ISI.EDU.

 A.ISI.EDU. 86400 A 26.3.0.103

 C.ISI.EDU. 86400 A 10.0.0.52

This data is represented as it would be in a master file. Most RRs are

single line entries; the sole exception here is the SOA RR, which uses

"(" to start a multi-line RR and ")" to show the end of a multi-line RR.

Since the class of all RRs in a zone must be the same, only the first RR

in a zone need specify the class. When a name server loads a zone, it

forces the TTL of all authoritative RRs to be at least the MINIMUM field

of the SOA, here 86400 seconds, or one day. The NS RRs marking

delegation of the MIL and EDU domains, together with the glue RRs for

the servers host addresses, are not part of the authoritative data in

the zone, and hence have explicit TTLs.

Four RRs are attached to the root node: the SOA which describes the root

zone and the 3 NS RRs which list the name servers for the root. The

data in the SOA RR describes the management of the zone. The zone data

is maintained on host SRI-NIC.ARPA, and the responsible party for the

zone is HOSTMASTER@SRI-NIC.ARPA. A key item in the SOA is the 86400

second minimum TTL, which means that all authoritative data in the zone

has at least that TTL, although higher values may be explicitly

specified.

The NS RRs for the MIL and EDU domains mark the boundary between the

root zone and the MIL and EDU zones. Note that in this example, the

lower zones happen to be supported by name servers which also support

the root zone.

The master file for the EDU zone might be stated relative to the origin

EDU. The zone data for the EDU domain might be:

 EDU. IN SOA SRI-NIC.ARPA. HOSTMASTER.SRI-NIC.ARPA. (

 870729 ;serial

 1800 ;refresh every 30 minutes

 300 ;retry every 5 minutes

 604800 ;expire after a week

 86400 ;minimum of a day

)

 NS SRI-NIC.ARPA.

 NS C.ISI.EDU.

 UCI 172800 NS ICS.UCI

 172800 NS ROME.UCI

 ICS.UCI 172800 A 192.5.19.1

 ROME.UCI 172800 A 192.5.19.31

Mockapetris [Page 38]

RFC 1034 Domain Concepts and Facilities November 1987

 ISI 172800 NS VAXA.ISI

 172800 NS A.ISI

 172800 NS VENERA.ISI.EDU.

 VAXA.ISI 172800 A 10.2.0.27

 172800 A 128.9.0.33

 VENERA.ISI.EDU. 172800 A 10.1.0.52

 172800 A 128.9.0.32

 A.ISI 172800 A 26.3.0.103

 UDEL.EDU. 172800 NS LOUIE.UDEL.EDU.

 172800 NS UMN-REI-UC.ARPA.

 LOUIE.UDEL.EDU. 172800 A 10.0.0.96

 172800 A 192.5.39.3

 YALE.EDU. 172800 NS YALE.ARPA.

 YALE.EDU. 172800 NS YALE-BULLDOG.ARPA.

 MIT.EDU. 43200 NS XX.LCS.MIT.EDU.

 43200 NS ACHILLES.MIT.EDU.

 XX.LCS.MIT.EDU. 43200 A 10.0.0.44

 ACHILLES.MIT.EDU. 43200 A 18.72.0.8

Note the use of relative names here. The owner name for the ISI.EDU. is

stated using a relative name, as are two of the name server RR contents.

Relative and absolute domain names may be freely intermixed in a master

6.2. Example standard queries

The following queries and responses illustrate name server behavior.

Unless otherwise noted, the queries do not have recursion desired (RD)

in the header. Note that the answers to non-recursive queries do depend

on the server being asked, but do not depend on the identity of the

requester.

Mockapetris [Page 39]

RFC 1034 Domain Concepts and Facilities November 1987

6.2.1. QNAME=SRI-NIC.ARPA, QTYPE=A

The query would look like:

The header of the response looks like the header of the query, except

that the RESPONSE bit is set, indicating that this message is a

response, not a query, and the Authoritative Answer (AA) bit is set

indicating that the address RRs in the answer section are from

authoritative data. The question section of the response matches the

question section of the query.

Mockapetris [Page 40]

RFC 1034 Domain Concepts and Facilities November 1987

If the same query was sent to some other server which was not

authoritative for SRI-NIC.ARPA, the response might be:

This response is different from the previous one in two ways: the header

does not have AA set, and the TTLs are different. The inference is that

the data did not come from a zone, but from a cache. The difference

between the authoritative TTL and the TTL here is due to aging of the

data in a cache. The difference in ordering of the RRs in the answer

section is not significant.

6.2.2. QNAME=SRI-NIC.ARPA, QTYPE=*

A query similar to the previous one, but using a QTYPE of *, would

receive the following response from C.ISI.EDU:

Mockapetris [Page 41]

RFC 1034 Domain Concepts and Facilities November 1987

If a similar query was directed to two name servers which are not

authoritative for SRI-NIC.ARPA, the responses might be:

Neither of these answers have AA set, so neither response comes from

authoritative data. The different contents and different TTLs suggest

that the two servers cached data at different times, and that the first

server cached the response to a QTYPE=A query and the second cached the

response to a HINFO query.

Mockapetris [Page 42]

RFC 1034 Domain Concepts and Facilities November 1987

6.2.3. QNAME=SRI-NIC.ARPA, QTYPE=MX

This type of query might be result from a mailer trying to look up

routing information for the mail destination HOSTMASTER@SRI-NIC.ARPA.

The response from C.ISI.EDU would be:

This response contains the MX RR in the answer section of the response.

The additional section contains the address RRs because the name server

at C.ISI.EDU guesses that the requester will need the addresses in order

to properly use the information carried by the MX.

6.2.4. QNAME=SRI-NIC.ARPA, QTYPE=NS

C.ISI.EDU would reply to this query with:

The only difference between the response and the query is the AA and

RESPONSE bits in the header. The interpretation of this response is

that the server is authoritative for the name, and the name exists, but

no RRs of type NS are present there.

6.2.5. QNAME=SIR-NIC.ARPA, QTYPE=A

If a user mistyped a host name, we might see this type of query.

Mockapetris [Page 43]

RFC 1034 Domain Concepts and Facilities November 1987

C.ISI.EDU would answer it with:

This response states that the name does not exist. This condition is

signalled in the response code (RCODE) section of the header.

The SOA RR in the authority section is the optional negative caching

information which allows the resolver using this response to assume that

the name will not exist for the SOA MINIMUM (86400) seconds.

6.2.6. QNAME=BRL.MIL, QTYPE=A

If this query is sent to C.ISI.EDU, the reply would be:

This response has an empty answer section, but is not authoritative, so

it is a referral. The name server on C.ISI.EDU, realizing that it is

not authoritative for the MIL domain, has referred the requester to

servers on A.ISI.EDU and SRI-NIC.ARPA, which it knows are authoritative

for the MIL domain.

Mockapetris [Page 44]

RFC 1034 Domain Concepts and Facilities November 1987

6.2.7. QNAME=USC-ISIC.ARPA, QTYPE=A

The response to this query from A.ISI.EDU would be:

Note that the AA bit in the header guarantees that the data matching

QNAME is authoritative, but does not say anything about whether the data

for C.ISI.EDU is authoritative. This complete reply is possible because

A.ISI.EDU happens to be authoritative for both the ARPA domain where

USC-ISIC.ARPA is found and the ISI.EDU domain where C.ISI.EDU data is

found.

If the same query was sent to C.ISI.EDU, its response might be the same

as shown above if it had its own address in its cache, but might also

be:

Mockapetris [Page 45]

RFC 1034 Domain Concepts and Facilities November 1987

This reply contains an authoritative reply for the alias USC-ISIC.ARPA,

plus a referral to the name servers for ISI.EDU. This sort of reply

isn't very likely given that the query is for the host name of the name

server being asked, but would be common for other aliases.

6.2.8. QNAME=USC-ISIC.ARPA, QTYPE=CNAME

If this query is sent to either A.ISI.EDU or C.ISI.EDU, the reply would

be:

Because QTYPE=CNAME, the CNAME RR itself answers the query, and the name

server doesn't attempt to look up anything for C.ISI.EDU. (Except

possibly for the additional section.)

6.3. Example resolution

The following examples illustrate the operations a resolver must perform

for its client. We assume that the resolver is starting without a

Mockapetris [Page 46]

RFC 1034 Domain Concepts and Facilities November 1987

cache, as might be the case after system boot. We further assume that

the system is not one of the hosts in the data and that the host is

located somewhere on net 26, and that its safety belt (SBELT) data

structure has the following information:

 Match count = -1

 SRI-NIC.ARPA. 26.0.0.73 10.0.0.51

 A.ISI.EDU. 26.3.0.103

This information specifies servers to try, their addresses, and a match

count of -1, which says that the servers aren't very close to the

target. Note that the -1 isn't supposed to be an accurate closeness

measure, just a value so that later stages of the algorithm will work.

The following examples illustrate the use of a cache, so each example

assumes that previous requests have completed.

6.3.1. Resolve MX for ISI.EDU.

Suppose the first request to the resolver comes from the local mailer,

which has mail for PVM@ISI.EDU. The mailer might then ask for type MX

RRs for the domain name ISI.EDU.

The resolver would look in its cache for MX RRs at ISI.EDU, but the

empty cache wouldn't be helpful. The resolver would recognize that it

needed to query foreign servers and try to determine the best servers to

query. This search would look for NS RRs for the domains ISI.EDU, EDU,

and the root. These searches of the cache would also fail. As a last

resort, the resolver would use the information from the SBELT, copying

it into its SLIST structure.

At this point the resolver would need to pick one of the three available

addresses to try. Given that the resolver is on net 26, it should

choose either 26.0.0.73 or 26.3.0.103 as its first choice. It would

then send off a query of the form:

Mockapetris [Page 47]

RFC 1034 Domain Concepts and Facilities November 1987

The resolver would then wait for a response to its query or a timeout.

If the timeout occurs, it would try different servers, then different

addresses of the same servers, lastly retrying addresses already tried.

It might eventually receive a reply from SRI-NIC.ARPA:

The resolver would notice that the information in the response gave a

closer delegation to ISI.EDU than its existing SLIST (since it matches

three labels). The resolver would then cache the information in this

response and use it to set up a new SLIST:

 Match count = 3

 A.ISI.EDU. 26.3.0.103

 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33

 VENERA.ISI.EDU. 10.1.0.52 128.9.0.32

A.ISI.EDU appears on this list as well as the previous one, but that is

purely coincidental. The resolver would again start transmitting and

waiting for responses. Eventually it would get an answer:

Mockapetris [Page 48]

RFC 1034 Domain Concepts and Facilities November 1987

The resolver would add this information to its cache, and return the MX

RRs to its client.

6.3.2. Get the host name for address 26.6.0.65

The resolver would translate this into a request for PTR RRs for

65.0.6.26.IN-ADDR.ARPA. This information is not in the cache, so the

resolver would look for foreign servers to ask. No servers would match,

so it would use SBELT again. (Note that the servers for the ISI.EDU

domain are in the cache, but ISI.EDU is not an ancestor of

65.0.6.26.IN-ADDR.ARPA, so the SBELT is used.)

Since this request is within the authoritative data of both servers in

SBELT, eventually one would return:

Mockapetris [Page 49]

RFC 1034 Domain Concepts and Facilities November 1987

6.3.3. Get the host address of poneria.ISI.EDU

This request would translate into a type A request for poneria.ISI.EDU.

The resolver would not find any cached data for this name, but would

find the NS RRs in the cache for ISI.EDU when it looks for foreign

servers to ask. Using this data, it would construct a SLIST of the

form:

 Match count = 3

 A.ISI.EDU. 26.3.0.103

 VAXA.ISI.EDU. 10.2.0.27 128.9.0.33

 VENERA.ISI.EDU. 10.1.0.52

A.ISI.EDU is listed first on the assumption that the resolver orders its

choices by preference, and A.ISI.EDU is on the same network.

One of these servers would answer the query.

7. REFERENCES and BIBLIOGRAPHY

[Dyer 87] Dyer, S., and F. Hsu, "Hesiod", Project Athena

 Technical Plan - Name Service, April 1987, version 1.9.

 Describes the fundamentals of the Hesiod name service.

[IEN-116] J. Postel, "Internet Name Server", IEN-116,

 USC/Information Sciences Institute, August 1979.

 A name service obsoleted by the Domain Name System, but

 still in use.

Mockapetris [Page 50]

RFC 1034 Domain Concepts and Facilities November 1987

[Quarterman 86] Quarterman, J., and J. Hoskins, "Notable Computer

 Networks",Communications of the ACM, October 1986,

 volume 29, number 10.

[RFC-742] K. Harrenstien, "NAME/FINGER", RFC-742, Network

 Information Center, SRI International, December 1977.

[RFC-768] J. Postel, "User Datagram Protocol", RFC-768,

 USC/Information Sciences Institute, August 1980.

[RFC-793] J. Postel, "Transmission Control Protocol", RFC-793,

 USC/Information Sciences Institute, September 1981.

[RFC-799] D. Mills, "Internet Name Domains", RFC-799, COMSAT,

 September 1981.

 Suggests introduction of a hierarchy in place of a flat

 name space for the Internet.

[RFC-805] J. Postel, "Computer Mail Meeting Notes", RFC-805,

 USC/Information Sciences Institute, February 1982.

[RFC-810] E. Feinler, K. Harrenstien, Z. Su, and V. White, "DOD

 Internet Host Table Specification", RFC-810, Network

 Information Center, SRI International, March 1982.

 Obsolete. See RFC-952.

[RFC-811] K. Harrenstien, V. White, and E. Feinler, "Hostnames

 Server", RFC-811, Network Information Center, SRI

 International, March 1982.

 Obsolete. See RFC-953.

[RFC-812] K. Harrenstien, and V. White, "NICNAME/WHOIS", RFC-812,

 Network Information Center, SRI International, March

 1982.

[RFC-819] Z. Su, and J. Postel, "The Domain Naming Convention for

 Internet User Applications", RFC-819, Network

 Information Center, SRI International, August 1982.

 Early thoughts on the design of the domain system.

 Current implementation is completely different.

[RFC-821] J. Postel, "Simple Mail Transfer Protocol", RFC-821,

 USC/Information Sciences Institute, August 1980.

Mockapetris [Page 51]

RFC 1034 Domain Concepts and Facilities November 1987

[RFC-830] Z. Su, "A Distributed System for Internet Name Service",

 RFC-830, Network Information Center, SRI International,

 October 1982.

 Early thoughts on the design of the domain system.

 Current implementation is completely different.

[RFC-882] P. Mockapetris, "Domain names - Concepts and

 Facilities," RFC-882, USC/Information Sciences

 Institute, November 1983.

 Superceeded by this memo.

[RFC-883] P. Mockapetris, "Domain names - Implementation and

 Specification," RFC-883, USC/Information Sciences

 Institute, November 1983.

 Superceeded by this memo.

[RFC-920] J. Postel and J. Reynolds, "Domain Requirements",

 RFC-920, USC/Information Sciences Institute

 October 1984.

 Explains the naming scheme for top level domains.

[RFC-952] K. Harrenstien, M. Stahl, E. Feinler, "DoD Internet Host

 Table Specification", RFC-952, SRI, October 1985.

 Specifies the format of HOSTS.TXT, the host/address

 table replaced by the DNS.

[RFC-953] K. Harrenstien, M. Stahl, E. Feinler, "HOSTNAME Server",

 RFC-953, SRI, October 1985.

 This RFC contains the official specification of the

 hostname server protocol, which is obsoleted by the DNS.

 This TCP based protocol accesses information stored in

 the RFC-952 format, and is used to obtain copies of the

 host table.

[RFC-973] P. Mockapetris, "Domain System Changes and

 Observations", RFC-973, USC/Information Sciences

 Institute, January 1986.

 Describes changes to RFC-882 and RFC-883 and reasons for

 them. Now obsolete.

Mockapetris [Page 52]

RFC 1034 Domain Concepts and Facilities November 1987

[RFC-974] C. Partridge, "Mail routing and the domain system",

 RFC-974, CSNET CIC BBN Labs, January 1986.

 Describes the transition from HOSTS.TXT based mail

 addressing to the more powerful MX system used with the

 domain system.

[RFC-1001] NetBIOS Working Group, "Protocol standard for a NetBIOS

 service on a TCP/UDP transport: Concepts and Methods",

 RFC-1001, March 1987.

 This RFC and RFC-1002 are a preliminary design for

 NETBIOS on top of TCP/IP which proposes to base NetBIOS

 name service on top of the DNS.

[RFC-1002] NetBIOS Working Group, "Protocol standard for a NetBIOS

 service on a TCP/UDP transport: Detailed

 Specifications", RFC-1002, March 1987.

[RFC-1010] J. Reynolds and J. Postel, "Assigned Numbers", RFC-1010,

 USC/Information Sciences Institute, May 1987

 Contains socket numbers and mnemonics for host names,

 operating systems, etc.

[RFC-1031] W. Lazear, "MILNET Name Domain Transition", RFC-1031,

 November 1987.

 Describes a plan for converting the MILNET to the DNS.

[RFC-1032] M. K. Stahl, "Establishing a Domain - Guidelines for

 Administrators", RFC-1032, November 1987.

 Describes the registration policies used by the NIC to

 administer the top level domains and delegate subzones.

[RFC-1033] M. K. Lottor, "Domain Administrators Operations Guide",

 RFC-1033, November 1987.

 A cookbook for domain administrators.

[Solomon 82] M. Solomon, L. Landweber, and D. Neuhengen, "The CSNET

 Name Server", Computer Networks, vol 6, nr 3, July 1982.

 Describes a name service for CSNET which is independent

 from the DNS and DNS use in the CSNET.

Mockapetris [Page 53]

RFC 1034 Domain Concepts and Facilities November 1987

Index

 A 12

 Absolute names 8

 Aliases 14, 31

 Authority 6

 AXFR 17

 Case of characters 7

 CH 12

 CNAME 12, 13, 31

 Completion queries 18

 Domain name 6, 7

 Glue RRs 20

 HINFO 12

 IN 12

 Inverse queries 16

 Iterative 4

 Label 7

 Mailbox names 9

 MX 12

 Name error 27, 36

 Name servers 5, 17

 NE 30

 Negative caching 44

 NS 12

 Opcode 16

 PTR 12

 QCLASS 16

 QTYPE 16

 RDATA 13

 Recursive 4

 Recursive service 22

 Relative names 7

 Resolvers 6

 RR 12

Mockapetris [Page 54]

RFC 1034 Domain Concepts and Facilities November 1987

 Safety belt 33

 Sections 16

 SOA 12

 Standard queries 22

 Status queries 18

 Stub resolvers 32

 TTL 12, 13

 Wildcards 25

 Zone transfers 28

 Zones 19

Mockapetris [Page 55]

